Saddle Invariant Objects and Their Global Manifolds in a Neighborhood of a Homoclinic Flip Bifurcation of Case B
نویسندگان
چکیده
When a real saddle equilibrium in a three-dimensional vector field undergoes a homoclinic bifurcation, the associated two-dimensional invariant manifold of the equilibrium closes on itself in an orientable or non-orientable way, provided the corresponding genericity conditions. We are interested in the interaction between global invariant manifolds of saddle equilibria and saddle periodic orbits for a vector field close to a codimension-two homoclinic flip bifurcation, that is, the point of transition between having an orientable or non-orientable two-dimensional surface. Here, we focus on homoclinic flip bifurcations of case B, which is characterized by the fact that the codimension-two point gives rise to an additional homoclinic bifurcation, namely, a two-homoclinic orbit. To explain how the global manifolds organize phase space, we consider Sandstede’s three-dimensional vector field model, which features inclination and orbit flip bifurcations. We compute global invariant manifolds and their intersection sets with a suitable sphere, by means of continuation of suitable two-point boundary problems, to understand their role as separatrices of basins of attracting periodic orbits. We show representative images in phase space and on the sphere, such that we can identify topological properties of the manifolds in the different regions of parameter space and at the homoclinic bifurcations involved. We find heteroclinic orbits between saddle periodic orbits and equilibria, which give rise to regions of infinitely many heteroclinic orbits. Additional equilibria exist in Sandstede’s model and we compactify phase space to capture how equilibria may emerge from or escape to infinity. We present images of these bifurcation diagrams, where we outline different configurations of equilibria close to homoclinic flip bifurcations of case B; furthermore, we characterize the dynamics of Sandstede’s model at infinity. Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand ([email protected], [email protected], [email protected])
منابع مشابه
Global Invariant Manifolds Near Homoclinic Orbits to a Real Saddle: (Non)Orientability and Flip Bifurcation
Homoclinic bifurcations are important phenomena that cause global re-arrangements of the dynamics in phase space, including changes to basins of attractions and the generation of chaotic dynamics. We consider here a homoclinic (or connecting) orbit that converges in both forward and backward time to a saddle equilibrium of a three-dimensional vector field. We assume that the saddle is such that...
متن کاملGlobal invariant manifolds in the transition to preturbulence in the Lorenz system
We consider the homoclinic bifurcation of the Lorenz system, where two primary periodic orbits of saddle type bifurcate from a symmetric pair of homoclinic loops. The two secondary equilibria of the Lorenz system remain the only attractors before and after this bifurcation, but a chaotic saddle is created in a tubular neighbourhood of the two homoclinic loops. This invariant hyperbolic set give...
متن کاملElements of Differentiable Dynamics and Bifurcation Theory (David Ruelle)
This book is a thin gem having two main parts: Part mDifferential Dynamical Systems and Part 2--Bifurcations. The approach to these subjects is a thorough grounding in dynamics on manifolds in finite-dimensional and Banach spaces, invariant sets and attractors, especially stable, unstable, and center manifolds for maps and semiflows; however, there is no mention of inertial manifolds, which are...
متن کاملHomoclinic saddle-node bifurcations in singularly perturbed systems
In this paper we study the creation of homoclinic orbits by saddle-node bifurca-tions. Inspired on similar phenomena appearing in the analysis of so-calledìocalized structures' in modulation or amplitude equations, we consider a family of nearly in-tegrable, singularly perturbed three dimensional vector elds with two bifurcation parameters a and b. The O(") perturbation destroys a manifold cons...
متن کاملBifurcations of global reinjection orbits near a saddle-node Hopf bifurcation
The saddle-node Hopf bifurcation (SNH) is a generic codimensiontwo bifurcation of equilibria of vector fields in dimension at least three. It has been identified as an organizing centre in numerous vector field models arising in applications. We consider here the case that there is a global reinjection mechanism, because the centre manifold of the zero eigenvalue returns to a neighbourhood of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 16 شماره
صفحات -
تاریخ انتشار 2017